Information-theoretic measures for nonlinear causality detection: application to social media sentiment and cryptocurrency prices
نویسندگان
چکیده
منابع مشابه
Information Theoretic Derivations for Causality Detection: Application to Human Gait
As a causality criterion we propose the conditional relative entropy. The relationship with information theoretic functionals mutual information and entropy is established. The conditional relative entropy criterion is compared with 3 well-established techniques for causality detection: ‘Sims’, ‘GewekeMeese-Dent’ and ‘Granger’. It is shown that the conditional relative entropy, as opposed to th...
متن کاملCryptocurrency Price Prediction Using News and Social Media Sentiment
This project analyzes the ability of news and social media data to predict price fluctuations for three cryptocurrencies: bitcoin, litecoin and ethereum. Traditional supervised learning algorithms were utilized for text-based sentiment classification, but with a twist. Daily news and social media data was labeled based on actual price changes one day in the future for each coin, rather than on ...
متن کاملInformation Theoretic Tools for Social Media
Information theory provides a powerful set of tools for discovering relationships among variables with minimal assumptions. Social media platforms provide a rich source of information than can include temporal, spatial, textual, and network information. What are the interesting information theoretic measures for social media and how can we estimate these quantities? I will discuss how measures ...
متن کاملInformation-Theoretic Measures for Anomaly Detection
Anomaly detection is an essential component of the protection mechanisms against novel attacks. In this paper, we propose to use several information-theoretic measures, namely, entropy, conditional entropy, relative conditional entropy, information gain, and information cost for anomaly detection. These measures can be used to describe the characteristics of an audit data set, suggest the appro...
متن کاملNon-parametric causality detection: An application to social media and financial data
According to behavioral finance, stock market returns are influenced by emotional, social and psychological factors. Several recent works support this theory by providing evidence of correlation between stock market prices and collective sentiment indexes measured using social media data. However, a pure correlation analysis is not sufficient to prove that stock market returns are influenced by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Royal Society Open Science
سال: 2020
ISSN: 2054-5703
DOI: 10.1098/rsos.200863